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Abstract: By simulating numerically the reaction dynamics of intermediate-energy heavy-ion collisions 

within the Boltzmann-Uehling-Uhlenbeck (BUU) transport model, we study systematically the 

onset of dynamical instabilities and nuclear multifragmentation in central collisions of 9hMo +“Mo 

at beam energies of 55 and 100 MeV/nucleon. It is found that dynamical instabilities characterized 

by an imaginary adiabatic sound velocity in the central region of the reaction develop during the 

expansion phase of the reaction. Thermalization can be reached at about the same time when the 

dynamical instabilities set in. Multifragmentation patterns, geometries of final-fragment distribu- 

tions as well as their dependence on the nuclear equation of state and the beam energy are also 

studied by making scatter plots of the one-body density distributions. 

1. Introduction 

Nuclear multifragmentation characterized by the emission of three or more inter- 

mediate-mass fragments with a mass of A 3 10 is a natural continuation of fission 

towards higher excitation energies I). At excitation energies E" =zB, the binding 

energy of the nucleus, it is mainly triggered by the competition of the repulsive 

Coulomb energy against the surface tension very much like nuclear fission at low 

excitation energies ‘). At substantially higher excitations, E* s B, the repulsive 

long-range Coulomb force is not anymore driving the system towards fragmentation 

into large pieces. Here the situation is more like the liquid to gas transition in an 

ordinary neutral, overheated macroscopic drop jmh). Expanded nuclear systems at 

densities and temperatures corresponding to the liquid-gas coexistence region are 

expected to decay into many intermediate-mass fragments ‘,‘). 

Besides target fragmentations in proton-induced reactions “), now the multifrag- 

mentation is frequently found in heavy-ion-induced reactions [e.g. refs. ‘“m’3)]. The 

phenomenon has been explained in a variety of ways and has been a subject of 

much debate. Available models can be divided into two groups: static and dynamic 

models. 
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Among the many static models, statistical models 14-“) have been rather successful 

in explaining a number of experimental data. Belonging to the same group, percola- 

tion-based phase-transition models have also been very successful in reproducing 

high-energy proton-induced and light-ion-induced multifragmentation data “.14). It 

was found very recently that for “‘Xe+ 19’Au reactions at E/A = 50 MeV, the 

percolation model predicts a too low multiplicity of intermediate-mass fragments 

compared to that of the experimental data ‘“,“). 

A number of dynamical models have been developed with success at different 

levels. Among the dynamical models, molecular-dynamics-based models 22,23) have 

been widely used for studying multifragmentation. Dynamical models of mean-field 

approach, represented by the Boltzmann/Vlasov/Nordheim-Uehling-Uhlenbeck 

models (BUU/VUU/BNV) 14,25) have been used also to study the mechanism of 

multifragmentation. 

In mean-field approaches, the emphasis has been put on either the nucleation or 

condensation of localized regions of the system or the development of dynamical 

instabilities due to the small amplitude, long-wavelength density fluctuations ‘,‘). 

In the final state of the reaction, several nucleons can be close to each other in 

phase space and the one-body field can bind them together to form a cluster. One 

of the most important conditions for forming clusters in mean-field approaches is 

for sufficient fluctuations to be generated during the reaction process. To improve 

the treatment of fluctuations in the BUU model, several methods have been put 

forward and studied numerically “~” ). For the same purpose, multifragmentation 

was also studied in a hybrid model 19) by coupling the cascade model 3”m32) for the 

earlier stage of the reaction and the Vlasov model 33) for the later stage of the reaction. 

Multifragmentation of finite nuclei due to the growth of dynamical instabilities 

has been studied rather extensively in various dynamical approaches. Dynamical 

instabilities and fragmentation of hot and compressed nuclei was studied in ref. “) 

using the Vlasov-Uehling-Uhlenbeck (VUU) model 35), in ref. 37) using a simple 

isentropic expansion model and in ref. 3x) using a hydrodynamical approach with 

the Thomas-Fermi approximation. The quasiparticle-dynamics model 39) has also 

been used to study the fluctuation growth in finite nuclei. A two-dimensional field 

model based on a wave mechanical description has been used for the same purpose 

in ref. 4”). More recently, the Boltzmann-Langevin model “) was used to study 

multifragmentation of a uniform gas initialized at a density and temperature corres- 

ponding to the mechanical instability region ‘I). 

However, multifragmentation in real nucleus-nucleus collisions due to the growth 

of dynamical instabilities was not studied until very recently 47m44). By performing 

the Boltzmann-Nordheim-Vlasov model (BNV) “‘) calculations, Moretto et al. 

observed multifragmentation in central 96Mo + 96M~ reactions at beam energies from 

55 to 100 MeV/nucleon. Stimulated by the strong oblate deformation of the dense 

part of the system before its fragmentation, they suggested a breaking of the “thin” 

disk due to Rayleigh-Taylor surface instabilities. Our recent BUU-model calcula- 



B.-A. Li. D. H. E. Gross / Dynamical instability 259 

tions using a soft nuclear equation of state show multifragmentation from a more 

or less spherical source in central MO+ MO reactions at a beam energy of 

55 MeV/nucleon. Dynamical instabilities characterized by an imaginary adiabatic 

sound velocity is observed to develop in the expansion phase of the reaction. We 

have published brief results of this work recently4’). It is interesting to note that 

in a recent paper also Bauer used the BUU model to study bubble and ring formation 

and their subsequent decay by multifragmentation 43). Their results on central 

collisions of 93Nb+‘)3Nb at a beam energy of 60 MeV/nucleon show similar 

fragmentation patterns as ours. 

In the present paper we investigate dynamical instabilities and multifragmentation 

more completely within the BUU model for intermediate-energy heavy-ion collisions. 

Our aims are twofold. Firstly, we study rather systematically by using different 

nuclear equations of states and beam energies the development of dynamical 

instabilities and the corresponding fragmentation patterns. Secondly, since the BUU 

model is based on a truncated one-body transport theory 46,47) and therefore lacks 

information on many-body correlations which are necessary to describe fragments, 

the fragments seen in the BUU calculations should not be considered literally as 

realistic fragments. To practically study properties of the fragments and compare 

with experimental data, we propose to couple the BUU model with a statistical 

model for multifragmentation, such as that described in ref. ‘). The necessary 

condition and inputs for the statistical model are the establishment of a more or 

less thermalized source, the size, mass number, charge number and the excitation 

energy of the source. We will therefore study the thermalization, size and mass 

number of the heavy residue in which dynamical instabilities may develop. 

The paper is organized as follows. We will first briefly introduce the BUU model 

and the inputs used in this study in the next section. In sect. 3, we present and 

discuss results of our calculations, A summary will be given at the end. 

2. The model 

Our study is based on the nuclear Boltzmann-Uehling-Uhlenbeck transport 

theory 24,25), h w ere the transport equation for the nucleonic one-body density distri- 

bution function f, =f(r, , p, , t) is given by 

J,fi +;m -V.U.V,f, (1) 

d'p,. d3p, d’p,, = 
(2?7)9 

av,K27r).763(p, +pz-p,.-pz,) 

x{f,x?*(l -fl)(l -f2) -f,fz(l -fl,)(l -A)). (2) 

In our numerical implementation we use the test-particle method 33), in which 

the solution of eq. (1) is reduced to the solution of a set of 6 x (A, + A,) x N coupled 
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first-order differential equations in time, where N is the number of test-particles 

per nucleon, and A, and A, are the target and projectile mass numbers, respectively. 

N = 150 is used in the following. The numerical details of the code used in the 

present study can be found in refs. 48m50). 

The mean-field potential U appearing in eq. (1) is parametrized as a density- 

dependent functional, 

U(P) = a(plpo) + b(PlPo)““. (3) 

Correspondingly, the potential energy density is given by 

W(P) = (I(p)dp=fg+- - b pm 

2 PO 0 1+a PO 
P. 

The parameters a, b and u are determined by nuclear-matter saturation properties 

and the nuclear-matter compressibility coefficient K. Here the coefficient K of 

nuclear matter at normal density is defined as 

K =9(aP/8~)~=9 
PC 
g+a+bu 

> 
. 

where the derivative is taken adiabatically, P is the pressure and pF is the Fermi 

momentum. Properties of nuclear matter are still not very well known. Current 

knowledge comprehends a narrow region around the nuclear ground state, namely, 

only density p. = 0.17 fmp3 and binding energy per nucleon E/A = -15.75 MeV, are 

well determined while even the compressibility coefficient at equilibrium is only 
known to lie between 210 MeV [ref. “)I and 310 MeV [ref. ‘I)]. For high-density 

and high-temperature nuclear matter no reliable information is available. In the 

present study we therefore use three different compressibility coefficients K of 200, 

380 and 540 MeV to study its effects. The parameters a, b and (+ are given in table 

1 for the three different K’s. 

To see the difference between the three equation of states and their density 

dependence, we present in fig. 1 the energy per nucleon for nuclear matter at zero 

temperature, 

-=- 

TABLE 1 

Parameters of the nulear equation of state 

K (MeV) a b CT 

(6) 

200 -358.1 304.8 1.167 

380 -123.6 70.4 2 

540 ~103.22 49.96 2.77 
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Fig. I. The nuclear equation of state at zero temperature. 

where EF = 37.26 MeV is the Fermi energy. The stiffness of the nuclear equation of 

state as a function of the compressibility coefficient is obvious. 

Within the dynamical instability or spinodal decomposition region, defined by 

the condition ~P/c?,, < 0 at constant temperature or constant entropy, a homogeneous 

system is unstable against fluctuation growth and separates into distinct liquid 

(fragments) and vapor (nucleons) components. We investigate dynamical 

instabilities and fragmentations with the BUU model both schematically by making 

scatter plots of one-body densities and quantitatively by studying the adiabatic 

sound velocity squared, 

(7) 

Using the above equation of state and the scaling transformation of the kinetic 

energy per particle in terms of the nucleon density in the adiabatic expansion 

process, it can be expressed as 5.1,43) 

(8) 

where (I$) is the average kinetic energy per nucleon. 

It is worth mentioning that entropy production in heavy-ion collisions has been 

a subject of many investigations ‘.“), particularly in ref. “) molecular-dynamics 

simulations for hot drops show that the matter almost expands adiabatically until 

it reaches the region of adiabatic instabilities. In the energy region we studied here, 
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both the BUU-model and the cascade-model calculations for medium-sized nucleus- 

nucleus collisions indicate that very little entropy is generated during the expansion 

phase before the fragmentation occurs ‘“). The adiabatic sound velocity can therefore 

give a good indication of the onset of dynamical instabilities. However, as soon as 

the sound velocity becomes imaginary the system will run into the entropy-generating 

period, the adiabatic sound velocity will lose its physical meaning. In ref. j3) the 

sound velocity was calculated as a function of time and the distance to the center 

of mass, it is seen that the dynamical instabilities mainly occur in places close to 

the center of mass. In the following we will calculate the sound velocity as a function 

of time for nucleons in a sphere centered at the center of mass with a radius of 2.0 fm. 

3. Results and discussions 

In this section we present and discuss results of our calculations for 9hMo + y6M~ 

reactions at zero impact parameter by using three different nuclear equations of 

states and two beam energies. We will also study the effect of Coulomb interaction 

by turning on and off the Coulomb potential. 

3.1. FRAGMENTATION PATTERNS 

To show schematically the development of dynamical instabilities and fragmen- 

tation, we show in figs. 2 and 3 scatter plots of 40 x (A,+ AJ test particles out of 

150 x (A,+ AP) test particles used in the calculations with and without Coulomb 

interactions, respectively. The beam energy for the reactions is 55 MeV/nucleon 

and the compressibility coefficient K is 200 MeV. The reactions are followed upto 

300 fm/c since the contact of the two nuclei. We only plotted the 40 x (At+A,) test 

particles in order to compare with results of Moretto et al. One can clearly see the 

onset of fragmentation at about 120 fm/c in both calculations. 

The interesting results seen from figs. 2 and 3 can be summarized as the following: 

(1) In both calculations, without Coulomb as also with Coulomb, the breaking 

into fragments occurs when the hot source expanded back to about normal nuclear 

density. At the moment of breaking, the spatial distribution, especially in the 

calculation with Coulomb interaction is quite spherical. The fragmentation is clearly 

over the whole volume. Later, at 120 fm/c in the case without Coulomb a doughnut 

shape seems to develop, however, we should not emphasize this too much as we 

know that BUU did become unstable much earlier. 

(2) The most interesting result is shown in fig. 4: Here we have plotted the radius 

of the dense part in the scatter plot of figs. 2 and 3 as a function of time. Here the 

radius is determined optically by measuring the distance of the outer edge of the 

dense parts of the scatter plots in the x): plane from the center of mass, since the 

usually used critical local-density or binding-energy criterion is not appropriate to 

apply here. In case of existing several fragments, we take the average distance of 
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Fig. 2. Scatter plots of the one-body density distribution for 96Mo + 9”Mo reactions at a beam energy of 
55 MeV/nucleon. The calculation is done with K = 200 MeV and with the Coulomb interaction. 
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Fig. 2-continued 
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Fig. 3. Scatter plots of the one-body density distribution for ‘)’ MO + “MO reactions at a beam energy of 
55 MeV/nucleon. The calculation is done with K = 200 MeV and without the Coulomb interaction. 
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Fig. 3-continued 



B.-A. Li, D.H. E. Gross / Dwamical instabilifv 267 

6 

Mo+Mo, E/A=55 MeV 

- b=O., K=ZOO MeV 

with Coulomb 

1 I I I I I 

0 50 100 150 200 250 300 

t (fm/c) 

Fig. 4. The radii of the dense part of the one-body density profiles shown in figs. 2 and 3 

these fragments from the center of mass. We clearly see the expansion from the 

initial compression up to the radius of about normal nuclear matter density at about 

60 fm/c where a substantial part of the nucleons start to leave the dense region as 

fast preequilibrium nucleons. From here on the remaining ensemble of densefragments 

creeps extremely slowl_v outwards up to it reaches a radius of R = 2A’13 at ~150 fm/c 

from where on the system explodes in the calculation with Coulomb repulsion. It is 

very suggestive to interpret this “creeping phase as a chaotic expansion of a 

fragmenting nucleus with a strong dissipation of energy into the new surfaces which 

finally terminates at R = 2A”3, the freeze-out point. This comes close to the picture 

described in refs. ‘_5,5h,2). 

(3) In contrast to the dynamics with Coulomb there is no further expansion 

without Coulomb repulsion beyond the freeze-out radius. On the contrary, the 

ensemble of dense fragments dissolves slowly due to further nucleon evaporation 

and even shrinks. The initial compression seems not to lead to a blowing up of the 

dense part of the system. All collective flow within this part seems to be completely 

dissipated during the strongly dissipative period of fragmentation. 

As we have seen here the occurrence of the fragmentation phenomenon strongly 

depends on the initial compression and subsequent expansion, these, however, are 

intimately determined by the compressibility coefficient and the beam energy used 

in the model calculations. It is therefore interesting to study how the fragmentation 

pattern depends on the compressibility coefficient K and the beam energy. The 

geometry of the final-fragment distribution might be studied experimentally through 
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the fragment-fragment correlation function which in turn might provide an experi- 

mental constraint on the nuclear equation of state “). 

First, we show in figs. 5 and 6 scatter plots of the one-body density distributions 

obtained by using K = 380 and 540 MeV, respectively. The beam energy is again 

55 MeV/nucleon and all the calculations are done with the Coulomb interaction. 

It is seen that the density distributions in the reaction plane (xz plane) are oblate 

due to the squeezing-out of nuclear matter in the initial compression phase. As we 

can see from fig. 1 nuclear matter is hard to compress with higher compressibility 

coefficients. In the planes (xy planes) perpendicular to the beam direction there are 

holes developing, the overall shape of the density distribution resembles that of a 

doughnut. Similar behaviour has also been observed in Moretto’s calculations with 

high compressibility coefficients. To see quantitatively effects of the nuclear equation 

of state on the radius of the dense part of the density distribution, we present in 

fig. 7 the radius as a function of time for the three compressibility coefficients K. 

In the initial compression and early expansion phases the three equations of states 

give rather similar results, after about 50 fm/c the difference begins to show up. 

For the K = 380 and 540 MeV cases the radius stays about constant for a short time, 

then it decreases due to continuous particle emission and the shrinking of holes in 

the middle. Apparently, with the high compressibility coefficients and a beam energy 

of 55 MeV/nucleon the initial compression is small and therefore the radial kinetic 

energy in the expansion phase is also smaller than the binding energy of nucleons, 

no Coulomb explosion is observed. 

To show the energy dependence of the fragmentation pattern in our model 

calculations, we show in figs. 8-10 the scatter plots for the y6Mo+96M~ reactions 

at a beam energy of 100 MeV/nucleon with K = 200,380 and 540 MeV, respectively. 

The radii extracted from the scatter plots are shown in fig. 11. Here we see that the 

whole system disintegrated into small fragments and single nucleons, this is because 

the radial expansion energy obtained at this energy after the initial compression is 

much larger than the binding energy of nucleons. The expanding velocity of the 

dense part of the system shows a slight slow down at about 100 fm/c as one can 

see from the slope of the radii as a function of time. With the high compressibility 

K’s the final fragments distribute in a more deformed oblate volume compared to 

that in the E/A = 55 MeV case. 

Wong proposed the formation of bubble nuclei at high excitations due to the 

Coulomb repulsion 36). It may be that the bubbles seen in our calculations at a beam 

energy of 55 MeV/nucleon with high compressibility coefficients are linked to the 

same phenomenon. However, they appear at later times much after the instabilities 

showed up. It is highly doubtful whether a reduced single-particle dynamics like 

BUU is able to describe the time evolution of the system correctly in spite of the 

considerable large many-body correlations that have been built up by the 

fragmentation. 
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Fig. 5. Scatter plots of the one-body density distribution for y6 MO +“Mo reactions at a beam energy of 
55 MeV/nucleon. The calculation is done with K = 380 MeV and with the Coulomb interaction. 
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Fig. S-continued 
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Fig. 6. Scatter plots of the one-body density distribution for “hMo+‘6M~ reactions at a beam energy of 
55 MeV/nucleon. The calculation is done with K = 540 MeV and with the Coulomb interaction. 



-50 -30 -10 :O 3C 5D -512 -3C -lC 10 30 50 
Y :rm: z (fm) 

-50 -30 -10 10 30 50 -50 -50 -13 10 30 50 
Y ffm) 2 (fm) 

Fig. 6-continued 



B.-A. Li, D.H. E. Gross / Dynamical instability 273 

18 

16 

14 

6 

L 

Mo+Mo, E/A=55 MeV, b=O 

With Coulomb interaction 

l k=ZOO MeV 

-w k=380 MeV 

A k=540MeV 

1: 
0’ 50 100 150 200 250 300 

t(fm/c) 

Fig. 7. The comparison of the radii of the dense part of the one-body distributions calculated at 

E/A = 55 MeV/nucleon with the three different compressibility coefficients. 

3.2. THE ADIABATIC SOUND VELOCITY 

The fragmentation we see here is triggered by fluctuations generated during the 

reaction process via nucleon-nucleon collisions and that from the initial distribution 

of test particles in phase space via a Monte Carlo sampling. They are further 

propagated through the mean field and subsequent nucleon-nucleon collisions. 

Whether these fluctuations can result in the disintegration of the reaction system 

depends on whether the density and temperature reached in the expansion phase 

can reach the hydrodynamical instability region or not. We study this problem by 

following the adiabatic sound velocity in the reaction process within a sphere 

surrounding the center of mass with a radius of 2.0 fm. 

Our results on the adiabatic sound velocity are shown in figs. 12 and 13 for the 

beam energy of 55 and 100 MeV/nucleon, respectively. It is seen that the sound 

velocity becomes imaginary at about 50 and 35 fm/c, respectively. The zero value 

of the adiabatic sound velocity in the later stage of the reaction is due to the zero 
density in the case of bubble formation and it may become real again due to the 

closing up of the bubble. The time when the sound velocity becomes imaginary is, 

however, not so sensitive to the compressibility coefficient used. It is interesting to 

note that the dynamical instabilities characterized by the imaginary adiabatic sound 

velocity already occurred when the density profile looks rather normal before the 
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Fig. 8. Scatter plots of the one-body density distribution for y6 MO + 96Mo reactions at a beam energy of 
100 MeV/nucleon. The calculation is done with K = 200 MeV and with the Coulomb interaction. 
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Fig. 9. Scatter plots of the one-body density distribution for” MO + 96Mo reactions at a beam energy of 
100 MeV/nucleon. The calculation is done with K = 380 MeV and with the Coulomb interaction. 
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Fig. 10. Scatter plots of the one-body density distribution for YhMo+“hMo reactions at a beam energy 

of 100 MeV/nucleon. The calculation is done with K = 540 MeV and with the Coulomb interaction. 
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Fig. 11. The radii of the dense part of the one-body as shown in figs. 8-10. 
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Fig. 12. The square of the adiabatic sound velocity calculated for E/A = 55 MeV with the three different 
compressibility coefficients. 
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Fig. 13. The square of the adiabatic sound velocity calculated for E/A = 100 MeV with the three different 

compressibility coefficients. 

bubbles or fragments appear. This finding is in agreement with that found by Ng6 

et al. “). That means the instabilities against fragmentation are coming very early in 

the BUU dynamics. 

3.3. THERMALIZATION OF HEAVY RESIDUES 

To practically study properties of final fragments and compare with experimental 

data we propose a hybrid model by coupling the BUU model with a statistical 

model. The necessary condition for a statistical model to be applicable is the 

establishment of a more or less thermalized source. For this purpose we study the 

relaxation of the quadrupole moment in momentum space for particles in a sphere 

of radius R shown in fig. 7 and fig. 11. In terms of the nucleonic phase-space 

distribution function f(r, p, t), the quadrupole moment is defined as 

Q__(t)= - I (2r)3 (2Pi -Pf -d)f(r, P, t) . 

Thermalization of nuclear systems at beam energies around 1.0 GeV/nucleon was 

studied in cascade models 3”.32) and the BUU model 57) by studying the relaxation 

of the quadrupole moment. At beam energies around 100 MeV/nucleon, it was 

also studied in the BUU model 4ysX ) and more recently in the QMD model 59). In 

figs. 14 and 15 we show the quadrupole moment together with the number of 
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Fig. 14. The quadrupole moment and the mass number of nucleons in a sphere of radius R surrounding 

the center of mass. The calculation is done for E/A = 55 MeV with the three different compressibility 
coefficients. 

nucleons in the sphere of radius R as a function of time for the reaction of 

96Mo+96M~ at a beam energy of 55 and 100 meV/nucleon, respectively. It is seen 

that the quadrupole moment becomes about zero at about 100 and 60 fm/c for 

E/A = 55 and 100 MeV/nucleon, respectively, for all of the three compressibility 

coefficients. It indicates that a thermal equilibrium is reached in the sphere at both 

of the beam energies. Our findings here on the thermalization of heavy residue in 

intermediate-energy heavy-ion collisions are in agreement with that of Aichelin and 

Stocker b4) as we11 as Bauer 49). It is interesting to note that, in recent experimental 

studies 60-62) by measuring the excited-state population of intermediate-mass frag- 

ments in conjunction-with a charged-particle multiplicity filter, it was found that 

rather complete thermalization has been established in central heavy-ion coliisions 

at beam energies around 50 MeV/nucleon. The same conclusion was drawn from 

the result of the recent experiment on the fragmentation of projectile spectators in 
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Fig. 15. The quadrupole moment and the mass number for nucleons in a sphere of radius R surrounding 

the center of mass. The calculation is done for E/A ;- 100 MeV with the three different compressibility 

coefficients. 

600A MeV ‘97A~ on various light targets “*63) by measuring the ratio of velocities 

in the longitudinal and transverse directions. 

4. Summary 

In summa~, we have studied systematically the onset of dynamical instabilities 

and nuclear multifragmentation in central collisions of 96Mo-t- 96M~ at beam energies 

of 55 and 100 MeV/nucleon by simulating numerically the reaction dynamics of 

intermediate-energy heavy-ion collisions within the Boltzmann-Uehling-Uhlenbeck 

(BUU) transport model. We found dynamical instabilities characterized by an 

imaginary adiabatic sound velocity in the central region of the reaction developed 

very early during the expansion phase of the reaction. We have also studied the 

thermalization of the dense part of the one-body density profile, it is found that 
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also a rather complete thermalization is established when the dynamical instabilities 

set in for the central collisions of 96Mo+96M~. As BUU is non-linear, significant 

fluctuations and correlations can grow and signal a transition to a new dynamics. 

Here a highly equilibrized, non-adiabatic expansion and fragmentation starts. 

Freeze-out, as assumed in the statistical model ‘) will be at the end of this. Fragmen- 

tation is accompanied by a build up of many-body correlations ignored in the BUU 

model. Thus these instabilities also signal the break-down of the validity of BUU. 

Only, if the many-body correlations do not significantly modify the time evolution 

of the single-particle distribution, one can follow the BUU dynamics further. 

We studied systematically multifragmentation patterns at two beam energies and 

three different compressibility coefficients by making scatter plots of the one-body 

density distributions. Up to about 100 MeV/c the evolution of the system is rather 

similar. In every case fragmentation and the occurrence of an imaginary sound 

velocity happens much earlier. 

Later on, following BUU further with all reservations mentioned above, the 

fragmentation patterns and the geometry of the final-fragment distribution become 

different at different beam energies and compressibility coefficients. At a beam 

energy of 55 MeV/nucleon by using of a soft nuclear equation of state of the 

compressibility coefficient K = 200 MeV, a scatter plot of the one-body density 

distribution shows after the breaking into “fragments”, a very slow creeping 

expansion up to a freeze-out and in the case of included Coulomb interaction a 

Coulomb explosion. At the same beam energy but K = 380 and 540 MeV, we 

observed the creation and disappearance of bubbles, no Coulomb explosion is 

observed. At a beam energy of 100 MeV/nucleon, with all the three compressibility 

coefficients of K = 200, 380 and 540 MeV, the initial compression is so high that 

the whole system blows up into small fragments and single nucleons. The final 

fragments and nucleons populate a volume with oblate deformation. The deforma- 

tion of the volume is larger with higher beam energies or higher compressibility 

coefficients. 

We would like to thank W. Bauer, A.R. DeAngelis, U. Mosel, J. Nemeth, 
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